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Abstract-In the context of a purely mechanical rate-type theory of elastic-plastic materials, a
special set of constitutive equations is discussed. In particular, a yield function is chosen which
includes a dependence on mean normal stress. The constitutive equations are capable ofdescribing
the strength-ditrerential etrect and also predict a plastic volume change. The values of the material
coefficients in the constitutive equations are determined from published experimental data for AISI
4330 steel. The predicted results are in good agreement with experiments, except for the magnitude
of the predicted plastic volume change, which is too large.

I. INTRODUCTION

In recent years it has been established by experiment that the yield stress of high-strength
steels is appreciably greater in uniaxial compression than in tension.t This variation in
yield stress is referred to as the strength-differential or SoD effect. Its main features are:

(i) it persists throughout the entire plastic strain range; and
(ii) it is accompanied by plastic volume expansion in both tension and compression

tests.

Due to the first feature, the SoD effect stands in contrast to Bauschinger and allied
effects, which become unimportant at large plastic strains. In order to establish the
presence of a true SoD effect as distinct from a variation in yield strength that is peculiar
to the region of initial yield, it is clearly necessary to continue experiments well into the
work-hardening range. Also, in connection with the identification of initial yield, it is
important to choose an appropriately large plastic strain offseq

Although in the present paper we are concerned only with the SoD effect in
high-strength steels, it is perhaps worth mentioning that other materials, including
polymers, soils and rocks also exhibit an SoD effect[I]. Ofcourse, for pressures of the order
of the yield strength, the SoD effect is negligible for low-strength ductile metals[I].

An SoD effect could conceivably arise from the preferential opening of microcracks in
tension tests. However, as noted by Spitzig et al. I2], the similarity in the magnitude of
the volume expansion under tensile and compressive loading indicates that this mechanism
is in fact not the cause of the SoD effect. Rather, the SoD effect is ascribed to the inhibiting
influence of pressure on shear-activated slip within grains.§ Mathematically, this is
reflected in the dependency of the yield function on mean normal stress. That this
dependency is significant for high-strength steels has been established by the experiments
of Spitzig et al. [2]. If a normality condition for plastic strain rate is satisfied, it then follows
that plastic volume change occurs, in qualitative agreement with feature (ii) above.

Spitzig et al. (2] concluded that the yield function also depends slightly on the third
invariant of the deviatoric stress tensor. However, a re-examination of their data by
Gupta[3] has shown that such a conclusion is unwarranted.

Based on the above considerations, in the context of a general theory of plasticity due
to Green and Naghdi [4, 5], we utilize in the present paper a yield fun9tion that includes
a dependence on mean normal stress s. This dependency is accounted for by means of two

tFor an extensive list of references, see the papers by Drucker(l] and Spitzig et al. (2].
tSee Table I of(!) for recommended values.
§In this regard also the S·D etrect is distinct from the Bauschinger etrect, which is attributable to residual

stresses due to the grain boundaries.
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material coefficients, '" and '1.t Unless'" is nonzero, there is no SoD effect and no plastic
volume change. In order for an SoD effect to be present at zero pressure, it is necessary
that '1 be nonzero also.

We now outline the contents of the paper. Section 2 contains a summary of the general
theory of plasticity originally proposed by Green and Naghdi [4, 5], and subsequently
developed by Naghdi and Trapp[6, 7J and Casey and Naghdi[8, 9]. In particular. a strain
space formulation of the theory is adopted. the advantages of which are discussed in [6].
Also, the method of characterizing strain hardening behavior which was proposed in [8.
9J is discussed.

In Section 3 we present a special set of constitutive equations which are capable of
describing the SoD effect and also predict a plastic volume change. These equations satisfy
a normality condition for plastic strain rate. In Section 4 the experimental data of Spitzig
et al. [2J is utilized to obtain values for material coefficients that appear in the constitutive
equations of Section 3. The SoD effect, plastic volume change and the strain-hardening
characteristics of AISI 4330 steel are analyzed. A discussion of these results is contained
in Section 5.

2. BACKGROUND INFORMATION

Let the motion of a body be referred to a fixed system of rectangular Cartesian
coordinate axes and let a typical particle of the body occupy the position XA in some fixed
reference configuration. Further, let Xi designate the position of the particle in the present,
or deformed, configuration at time t. Then the motion of the body is defined by

Xi = Xi(XA, t). (2.1)

The deformation gradient relative to the reference position and its determinant are

iJXi
FiA = iJX

A
' J =det (F';A) > o. (2.2)

Throughout this paper, indices take the values I, 2, 3, and the usual convention of
summation over repeated indices is employed. Lower case indices are associated with the
spatial coordinates Xi and upper case indices refer to material coordinates XA•

We define a symmetric Lagrangian strain tensor eKL by

(2.3)

where ~KL is the Kronecker delta. The six-dimensional Euclidean vector space formed from
the components of eKL is called strain space.

Recall the relationship between the symmetric Piola-Kirchhoffstress tensor SKL and the
symmetric Cauchy stress tensor tij' namely

(2.4)

The six-dimensional Euclidean space formed from the components of SKL is called stress
space.

In addition to the strain tensor eKL, at each point of the continuum we admit the
existence of a plastic strain, specified by a symmetric second order tensor eh, and a
measure of work-hardening, specified by a scalar-valued function /c. We also assume the
existence of a scalar-valued yield (or loading) function g in strain space such that for fixed
values of eh and /c, the equation

(2.5)

tSee (3.4)1 and also (3.18).
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represents a closed orientable hypcrsurface of dimension five enclosing an clastic region
in strain space. The function g is chosen so that g < 0 for all points in the elastic region.
The hypersurface is called the yield (or loading) surface in strain space.

For the stress response we adopt the special form that was discussed in ([8], eqns 34-42,
and Case (b) on p. 291), so that

(2.6)

We also assume the following work postulate due to Naghdi and Trapp[7]: the external
work done on an elastic-plastic body in any smooth homogeneous cycle of deformation
is nonnegative.

The yield function in stress space is denoted by f For fixed values of eh and K, the
equation

(2.7)

represents the five-dimensional yield surface in stress space. The elastic region in stress
space corresponds to f < O. The functions SKL' g and f are taken to be smooth. We recall
the notations

(2.8)

where a superposed dot signifies material time differentiation.
Using the work assumption ofNaghdi and Trapp[7], the constitutive equations for the

rate of plastic strain and the rate of work-hardening can be expressed in the form [8]:

and

I~ :~ ~:~ and i < 0 ~~~
eh = 0 if g = 0 and i = 0 (c)

A.y*g ::;of if g = 0 and g > 0 (d)
uSn

(2.9)

(2.10)

where 'KL is a symmetric tensor-valued function and A. and y* are positive scalar-valued
functions of the variables SMN' e'MN' K. The conditions involving g and g in (2.9) are the
loading criteria of the strain space formulation. These conditions correspond respectively
to an elastic state (or point in strain space); unloading from an elastic-plastic state; neutral
loading from an elastic-plastic state; and loading from an elastic-plastic state. It is
stipulated that g=0 during loading. It then follows with the help of (2.9) and (2.10) that

of ( og og )I + A.y*:;-- -;;-p +-;- 'KL =O.
uSKL ue KL uK

(2.11)

As shown in [8, 9], the strain-hardening behavior of an elastic-plastic material may be
characterized by a rate-independent, dimensionless function ~ which for the constitutive
equations of the present paper is given by

where

r
til = A.y*r =-r+A'

(2. J2)

(2.13)
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An elastic-plastic material is said to be hardening, softening on exhibiting perfectly plastic
behavior according to whether tP is positive, negative or zero, respectively. During loading,
the function tP has the same value as the quotient Iii of the quantities defined in (2.8).

The quotientIii is a measure of the ratio of the outward velocities with which the yield
surfaces in stress space and strain space are moving during plastic flow. While during
loading the yield surface in strain space is always moving outwards loca!ly, the correspond
ing yield surface in stress space may concurrently be moving outwards, inwards or may
be stationary depending on whether the material is exhibiting hardening, softening or
perfectly plastic behavior [8]. For the case of uniaxial loading of special elastic-plastic
materials, the quotientIii is related to the slope of the stress-strain curve [8]. Traditionally,
hardening corresponds to a positive value of the slope and perfectly plastic behavior to
a zero value. Softening corresponds to a negative slope, such as occurs on the falling
portion of the engineering stress versus engineering strain curve for uniaxial tension.

Since A.y· > 0, it is clear from (2.12) that hardening, softening and perfectly plastic
behavior corresponds to r being positive, negative and zero, respectively. In the present
paper, we confine attention to hardening behavior only, so that r > O. In this case the flow
rule in (2.9d) can be written as

where (2.12) has been used.

'p _£ of 0
eKL-r:l #,

USKL
(2.14)

3. BEHAVIOR OF A SPECIAL CLASS OF ELASTIC-PLASTIC
MATERIALS UNDER COMBINED UNIAXIAL LOADING

AND PRESSURE

In this section we consider the response in small deformation of metals whose behavior
is characterized by a simple set of constitutive equations appropriate for elastic-plastic
materials which are homogeneous and initially isotropic in their reference configuration.

Recall that the infinitesimal elastic strain tensor is defined by

(3.1 )

It is convenient to utilize the standard decomposition of tensors into their spherical and
deviatoric (traceless) parts. Thus, for example, in the case of the strain tensor, we have

(3.2)

where ebKL is the spherical part of eKL' YKL is the deviatoric part of eKL and e is the mean
normal strain. In a similar manner, we decompose SXL' eh, eh into spherical parts SbKL,

etbKL, ePbKL and deviatoric parts tXL' yh, Yh, respectively.
The stress response in (2.6) is assumed to be given by generalized Hooke's law, so that

S= 3ke t
, t KL = 2J-L Yh, (3.3)

(3.4)

where k( > 0) and J-L( > 0) are, respectively, the bulk modulus and the shear modulus of
elasticity. We will consider a special loading function of the form

f=tKLt KL +3t1t (S--jY -K,

where tit and rJ are constants, and where (3.3) have been used to derive g from f
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The loading function (3.4») does not depend explicitly on plastic strain but includes a
dependence on mean normal stress. It also allows for unequal yield strengths in tension
and compression and, as we shall see, is therefore capable of describing an SeD effect.
When 1/1 = 0 and " = constant, (3.4)1 reduces to the usual von Mises yield function. If
'1 == 0, (3.4) reduces to a loading function previously employed by Casey and Naghdi ([8],
eqn 55) and by Green and Naghdi[IO]. If 1/1 = I, we note that (3.4)\ may be written in the
form

(3.5)

The coefficient function eKL for the rate of work-hardening response in (2.10) is
assumed to be of the form

eKL = PT:KL + 4>($ -1) lJKL,

where p and 4> are constants, which reduces to ([8], eqn 54) if '1 == O.
It can be easily shown that

a~L = {T:KL + 1/1($ -1)lJKLJ.
/ == {T:KLiKL + 31/1($ -1);J
g == 2[2JlT:KLYKL + 91/1k(S - 3)iJ

=/ + 2[2JlT:KL1h + 91/1k (s -j )c1p1
During loading, f =1= 0, so that

{T:KLiKL + 31/1($ -3);]-/C == 0,/= /C,

and hence for hardening behavior

Also, using (3.4), (3.6) and (3.7).. from (2.8) and (2.13) we obtain

A ={2JlT:KLT:KL + 91/1 2k(S - 3y] > 0,

r = {PT:KLT:KL + 31/14>($ -1YJ > o.

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

We now consider a homogeneous motion of a right circular cylindrical body sustained
by a combination of applied uniform pressure p. ~ O. and uniaxial loading s· which is
uniformly distributed on the bases of the cylinder. Both p. ans s· are functions of time
only. For tension s· ~ O. while s· :s; 0 for compression.

Let the initial length and radius of the cylinder be 10 and '0' respectively, and the

58 Vol. 20. No. 4-F
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deformed length and radius be I and r. Assume an axially symmetric motion of the form

(3.11)

(3.12)

I
I + ,1,1 0

11F;... 11 == 0 1+,1,2
o 0

J=(1 +,1,1)(1 +,1,2)2,

11(1 + ,1,1)2-1
IleKLl1 == 2 ~

where ,1,10 ,1,2 are functions of time only, with initial values equal to zero. The deformation
gradient (in matrix form), its determinant and the Lagrangian strain in the motion (3.11)
are given by

where (2.2) and (2.3) have been used.
The Cauchy stress tensor is of the form

I 0 0 11 0 01IIlij II == - p* 0 1 0 + s* 0 0 0
001 000

(3.13)

Therefore, in view of (2.4), (3.12)1.2 and (3.13), the symmetric Piola-Kirchhoff stress tensor
may be written as

1 0 01 II 0 0IlsKLl1 = -p 0 1 0 +s 0 0 0
001 000,

(3.14)

where
p =p*(l +,1,1),

s =p*(l + A1){1- G: ~~y} + s*(ll : ~~)2.

From (3.14) we calculate

(3.15)

- s s b
S =3- p, tKL =3 KLo (3.16)

where the matrix

(3.17)

has been introduced for convenience. During loading it follows from (3.8), and (3.16) that

1
f =- [1$2 + '" (s - 3p - ,,)2] - Ie =O.

3
(3.18)

For a fixed value of Ie, (3.18) describes an ellipse in the p-s plane if and only if '" > O.
By introducing the change of variables

SH = S cos 8 - p' sin 8,

p n =s sin 8 +p' cos 8,

I " 28 3'"p = p +3' tan == 1- 41/1'

(3.19)
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___+-_-+_!-- ""'*O:;""'_..J.- +.-_p

"1-'3 ---I

Fig. I. Sketch of the yield surface described by (118) or (3.20). At a constant value ofP. the material
yields at a tensile stress s, and a compressive stress St'
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(3.18) may be reduced to the form

{I +5t/J -(1-8t/J + 25t/J 2)!}p"2+ {1 +5t/J +(1-81/1 +2S1/12}!}S"2==3K. (3.20)

In Fig. I. an ellipse described by (3.20) is drawn for a fixed value of K.

For hardening behavior we have

1= " = ~ [lss + t/J (s - 3p - ,,}(s - 3jJ)] > 0,
3

4
A =3[4JlS2 + 31/1 2k(s - 3p -" )2] > O.

2r == 3[2f1s2+ t/Jt/J (s - 3p - ,,)~ > 0,

(3.21 )

(3.22)

where (3.16), (3.8)3' (3.9) and (3.10) have been used.
For the rate of plastic strain during hardening behavior, we find with the use of (2.14),

(3.7)., (3.16), and (3.21)1,3 that

~p = ~ .1. ( _ 3 _ ) lss + 1/1 (s - 3p - ,,)(s - 3jJ)
3 Y' S P " 2f1s2+ t/Jt/J(s _ 3p _ ,,)2 '

• p _ ls lss + t/J (s - 3p - ,,)(s - 3jJ) b
'1 KL - 3 2f1s2+ I/It/J (s _ 3p _ ,,)2 KL'

In Section 4, we will compare the results of the present section with experimental data
obtained by Spitzig et al. [2]. In anticipation of this, we consider now the special case for
which jJ == O. Thus, from (3.22) we obtain

s 'p S b
I' == 9k*(s, p)' '1 KL == 6ft *(s, p) KL'

o
- v*(s, p)

o
o !o ,

- v*(s, p)

(3.23)
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s - ljI (s - 3p - tI )
v*(s, p) = 2s + ljI(s - 3p - tI)'

£*(s, p) =~ 2PS2+ ljI¢(s - 3p - tI)2 > 0, (3.24)
2 [2s + ljI (s - 3p - '7 W

*( ) _ £*(s,p) k* _ £*(s, p)
p. s,p - 2[1 + v*(s,p)]' (s, p) - 3[1 - 2v*(s, p)] ,

and the positivity of £*(s, p) follows from (3.21 )3' The material coefficients in (3.24) have
been defined as in Casey and Naghdi ([8], Section 4) and are analogous to the constants
of linear elasticity. The elastic strains are

-, s - 3p, s b
e =~' YKL= 6p. KL' (3.25)

During loading K> 0 and therefore, at constant p, s is nonzero and we can obtain the
derivatives

(3.26)

II
deKL II I 1 0 0I 1 I
& =E ~ - ; _~ + £*(s, p) ~

dK 2
ds = 3[(2 + t/J)s - ljI(3p + tI)],

where (3.25), (3.23) and (3.21), have been used.
In a region of hardening, we may write (2.12) as <P = (1 + A/F)-I. Then, by (3.21)2.3

and (3.24»).2

<P = [I + £ {2(1 + v*(s, p»2 +(I -2v*(s, p»2}J-1
3£*(s, p) 1+ v 1- 2v

[
£ { 2(V-V*(S,p»2}]-1

= 1+ £*(s, p) 1+ (1 + v)(1 - 2v) ,

(3.27)

where £ is Young's modulus and v is Poisson's ratio. Equations of the form (3.27) were
previously derived in ([8], Appendix).

Finally, we provide a definition of the strength-differential effect at constant p. If at
any given p and for fixed values of plastic strain and K, the material yields at a tensile stress
s, > 0, and at a compressive stress Sc < 0 (see Fig. 1), the S-D effect is

But, from (3.18)

S-D =2 Iscl-ls,1 =2 Sc + s'.
~ sc- s,

(2 + t/J)sc = ljI(3p + tI) - [3(2 + ljI)K - 2lj1(3p + tI)2]1/2,

(2 + t/J)s, = t/J(3p + '7) + [3(2 + t/J)K - 2t/J(3p + '7)2]1 /2.

(3.28)

(3.29)



Therefore,

Also,
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2t/J(3p + t/)
sc+ s,= 2+ t/J '

t/J(3p + t/)2 - 3/\
SC S, = 2 + t/J .

S-D= _ 2t/J(3p+t/)
[3(2 + t/J)/\ - 2t/J (3p + t/ )~1/2

385

(3.30)

(3.31)

4. DETERMINATION OF THE MATERIAL COEFFICIENTS

In this section we use the experimental data of Spitzig et al. [2] for AISI 4330 steel
to determine the material coefficients", t/J, pand f/J, as well as other quantities from Section
3. In order to convert the data of [2] to a form that can be used in our equations, we record
the relationship between the strain measure used above and that of [2]. In the motion
(3.11), the deformed and undeformed dimensions of the cylindrical body are related by

(4.1)

The "true strain" tensor is then given by

In (//10) 0 0

II £AS II = 0 In (r fro) 0
0 0 In (r fro)

In (I + At) 0 0

= 0 In (I + A2) 0
0 0 In(I+A2) .

It follows from (4.1), (4.2) and (3.12») that

2e1l =exp (2£11) - I

2e22 =2e)) =exp (2£22) - I.

(4.2)

(4.3)

The maximum value of 1£111 encountered in the experiments of [2] is about 0.04, so we
will assume that in expressions involving strain, terms of second order in the true strain
may be neglected in comparison with linear terms. Then,

(4.4)

approximately.
Next, we recall that the relationship between an element of volume dvo in the reference

configuration and its image dv in the deformed configuration is

dv = J dvo.

To the order of approximation being considered

Similarly, the plastic volume element dv' is given by

(4.5)

(4.6)

(4.7)
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Hence, the rate of plastic volume change per unit initial volume is

dv P
'p-d =eKK'

Vo
(4.8)

and the ratio

-
dV

P
/P 'Py =- ell

dvo
(4.9)

may be expressed as

deh
y'----1-2v*(s,p),

defJ
(4.10)

where (3.23») has been used.
For AISI4330 steel, Young's modulus and Poisson's ratio have values E - 28700 (ksi)

and v - 0.29, respectively [2]. Spitzig et al. [2] measured plastic volume change and plotted
their results in Fig. 7 of [2]. The data points are scattered considerately, especially in the
region of initial yield, but lie approximately on a straight line of slope Iy'l = 0.005, which
in view of (4.10) corresponds to a value of 0.4975 for v*(s,p) in tension and 0.5025 in
compression. Using these valuest and appealing to (3.25) and (4.4), (3.15) may be written
in the form

p = a.IP·,
(4.11 )

280

270

:= 250..
~..
Ii 240e
u;

230

220

210

p =160 I ksi)

---- p= 80lksi)

.05.04.03.02.01
200 '----'---'----'---'----'---

o
Plastic: Strain. • r.

Fig. 2. Stress versus plastic strain curves for AISI 4330 steel in tension at three fixed pressures.
(After Fig. 3 of Spitzig et aI. (2]).

tAs we shall see below, other data from (2J. when used in our equations lead to somewhat different values
for y*(s. p). The present calculation is not very sensitive to these differences.
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where Gtl and (X2 are given by the approximationst

{
1.009 +£fl' (tension),

(Xl = 0.991 +£fl' (compression),

{
0.986 - 1.995£f.. (tension)

Gt2 = 1.014 - 2.006£fh (compression).

387

Data from Figs. 3 and 4 ofSpitzig et 01.[2] were substituted in (4.12) and (4.11) in order
to obtain the corresponding values of p and s. Also, since p* rather than p was held
constant in the experiments of [2], a small correction was applied to account for the
change in p. However, in the worst case in tension, p increases from 160 (ksi) to 161 (ksi)
at £f] =0.035 and the corresponding correction to s* is only 1 (ksi). The converted data
are plotted in Figs. 2 and 3.

Next, we consider the variation of yield stress s with respect to p at constant values
of plastic strain and Ie. Thus, we use (lI8) and (3.24)1 to calculate the partial derivative

We further note that

os _ 3'" (s - 3p - " ) _ _ *
~ - 2s '" ( 3 ) - 1 2v (s, P).up + s - 'fJ - "

as ofIof . /.-=- -=e~Kefh
iJp iJSKK OSII

(4.13)

(4.14)

where (4.13), (3.1)1> (3.16), and (2.14) have been used. From (4.13) and (4.10), it is clear

340

330

320

310

300

290-..;;..
-;;; 280

i:: 270In

p =160 (ksi)

p =80 {ksi}

p·O

~% ~ ~ ~ ~ ~

Pla.tic Strain, .:

Fig. 3. Stress venus plastic strain curves for AISI4330 steel in ~mpression at three fixed pressures.
(After Fig. 4 of Spitzig et (1/.[2]).

tThe magnitude or the elastic strain (~I is almost constant. at a value or 0.009.
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Fig. 4. Variation of work-hardening parameter with stress in (a) Region I and (b) Region II, for
three fixed pressures.

os
-="l·Op (4.15)

In order to obtain values for" and tjI, we used a trial and error method to obtain
solutions to (3.30) which satisfied the data in Figs. 2 and 3. (A first approximation is
obtained by neglecting tjI in comparison to 2.) Rather than find values of 1/1,,, which would
give a reasonable approximation over the entire range of plastic strain in Figs. 2 and
3, we obtained values which separately gave good approximations along the lower
portions of the curves (Region I) and along the upper portions (Region II). The
calculated values of tjI, " are listed in Table I. The variation of" as a function ofs, obtained
from (3.18), is plotted in Fig. 4. Typical yield surfaces for the two regions are shown in
Fig. 5. The variation of v*(s, p), as given by (3.24)1> is presented graphically in Fig. 6. The
strength-differential effect, obtained from (3.31), is plotted as a function of" in Fig. 7.
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600 800 1000 1200

------ ........- ......
",

\
\

]I \
\
\
I

Fig. 5. Typical yield surfaces in Regions I and II. For the surface in Region I, " .. 59000 (ksi~

and 8 =1.37°. For the surface in Region II, " =69000 (ksiZ) and 8 =2.92°.

To obtain values of fJ and (j), measured values of the slopes of Figs. 2 and 3 were used
in conjunction with (3.26). and (3.241. However, it is difficult to determine these constants
accurately by this method. Approximate values are given in Table 1. Corresponding
predicted values of £·(s, p), as given by (3.24)2' may also be found in Table. I. In order
to quantify the strain-hardening behavior, we used (3.27) to calculate (I. The resulting
values are given in Table I as well.

Due to characteristic differences between the curves for uniaxial tension and com
pression in the region of initial yield (see Figs. 2 and 3 in the range 0-0.003 for plastic
strain), we also calculated values of certain material coefficients based specifically on the
data for this region. The results are recorded in Table 2. However, as mentioned in the
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Fig. 6. Variation of v'(.r,p) with stress in (a) Region I and (b) Region II, at three fixed pressures.

Introduction, it is the behavior of the material over the entire plastic range-rather than its
behavior in the region of initial yield-that is of importance in discussing the S-D effect.

S. DISCUSSION

In this section we discuss certain features of the results contained in Sections 3 and
4.

To summarize, a yield function (3.4) was chosen which, for the type of loading used
in the experiments of [2], reduces to the form (3.18). The stress response was assumed to
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Fig. 7. The strength-differential effect versus the work-hardening parameter in Regions I and II
at three fixed pressures.



Table I. Values of various functions and material coefficients for Regions I and II

Tension :;l
n

or :!!.
Region p(ksi) Compression ., £·(s, p )(ksi) If/(ksi) P(ksi) " (ksi) '"

ri
::t

OQ

T 0.100 3280 S-
O 0.

C 0.136 6140 ~
T 0.1l9 4050 -4400 9500 -2200 0.015 ri

80 ::t
C 0.149 6590 -~

160 T 0135 4720 n
C 0.158 6890 a
T (-0.010) (-291) :r

0 c 0.022 904 'U
iii'

T 0.006 165 -2500 1900 -1600 '"II 0.03 ~:80 C 0.030 1170 -<
160 T 0.018 542

C 0.035 1330

~
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Table 2. Values of various functions and material coefficients for the region of initial yield

Tension
p(ksi) or compression v*{s,p) S-D 0° K{ksi2)

'"
,,(ksi)

0
T 0.419

C 0.570
0.099

80 T 0.428

C 0.560
0.086 0.664 53000 0.0075 -2900

I(Ill T 0.436

C 0.552
0.075

obey (3.3) and the constitutive equation for plastic strain rate is given by (2.14) during
hardening behavior. The strength-differential effect is given by (3.31), and the ratio ,p
associated with plastic volume change, by (4.10). The quantities listed in Tables I and 2
and those plotted in Figs. 2-7 were determined using data from [2].

Clearly, the yield function (3.18) predicts both a change in plastic volume and a
strength-differential effect. We observe that if t/J =0, then by (3.24)1 and (4.11), v· = 1/2
and ,P =O. Furthermore, by (3.31), 8-D =0 also. Therefore, in order to describe both
change in plastic volume and a strength-differential effect it is necessary to include a
dependence on mean normal stress sin the yield function (3.4). However, it is also worth
emphasizing that unless " #: 0 as well, no 8-D effect is predicted at p = O.

Also in regard to the yield function in the form (3.18), we note that for fixed values
ofs-3p, (3.18) gives the same yield stress in tension and in compression. This feat\Jre agrees
with the data of Spitzig et al. [2], as observed by Gupta [3].

For the range of loading covered in the experiments of [2], we see from Fig. 4 that the
work-hardening parameter K is virtually linear as a function of stress both in Regions
I and II. Thus, the slope in (3.26). is virtually constant for a given region and pressure.

From Fig. 5, it is clear that the effect of plastic deformation is to move the center of
the ellipse closer to the origin in stress space and to increase the tilt of the axis. For small
t/J, the ellipses in Fig. 5 are given with sufficient accuracy by the following approximations
to (3.19) and (3.20):

(5.1)
p"=s(J+p', s"=s-p'O,

so that the semimajor and semiminor axes of the ellipses have approximate lengths
{K/3t/J}1/2 and {3K/(2+t/J)}1/2, respectively.

In Fig. 6 we see that the relationship between v·(s,p) and s at constant p does not
deviate noticeably from linearity in either region. We observe, however, that for tension,
v*(s,p) is less than 1/2, while for compression v·(s,p) is greater than 1/2. As p increases,
v*(s,p) tends towards 1/2 in both cases. As mentioned before, Spitzig et al.[2] report that
yP = 0.005 approximately for tension (and the negative of this value for compression). This
corresponds values of 0.4975 and 0.5025 for v·(s, p) according to (4.10). In Region I, at
p =0, typical values for v·(s, p) according to the present theory are (see Fig. 6a) 0.385
for tension and 0.590 for compression. These correspond to '1 P = 0.23 for tension and
'1 P = - 0.20 for compression.

Spitzig et al. [2] also found a large difference between the value predicted for '1 P from
their linear yield function and the measured value. These authors suggested that the
normality condition for plastic strain rate does not hold.t This possibility will not be
pursued in the present paper.

tSee also the later investigation!) I] by Spitzig el aJ. on maraging and HY·80 steels.
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The calculated strength-differential effect which i~ plotted in Fig. 7 gives good
agreement with the data in Figs. 2 and 3.
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